Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downscaling micro- and nano-perovskite LEDs

Abstract

Many technological breakthroughs in electronics and photonics were made possible by downscaling—the process of making elementary devices smaller in size1,2,3,4,5. The downsizing of light-emitting diodes (LEDs) based on III–V semiconductors led to micro-LEDs5,6,7,8,9,10,11,12, an ‘ultimate technology’ for displays. However, micro-LEDs are costly to produce and they exhibit severe efficiency losses when the pixel sizes are reduced to about 10 μm or less, hindering their potential in commercial applications. Here we show the downscaling of an emerging class of LEDs based on perovskite semiconductors to below the conventional size limits. Micro- and nano-perovskite LEDs (micro-PeLEDs/nano-PeLEDs) with characteristic pixel lengths from hundreds of micrometres down to about 90 nm are demonstrated, through a localized contact fabrication scheme that prevents non-radiative losses at the pixel boundaries. For our near-infrared (NIR) and green micro-PeLEDs, average external quantum efficiencies (EQEs) are maintained at around 20% across a wide range of pixel lengths (650 to 3.5 μm), exhibiting minimum performance reduction on downsizing. Our nano-PeLEDs with characteristic pixel lengths down to about 90 nm represent the smallest LEDs reported, enabling a record-high pixel density of 127,000 pixels per inch (PPI) among all classes of LED arrays. Our demonstration showcases the strength of micro- and nano-PeLEDs as a next-generation light-source technology with unprecedented compactness and scalability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication processes of micro-PeLEDs and nano-PeLEDs.
Fig. 2: Device characteristics of NIR micro-PeLEDs and nano-PeLEDs.
Fig. 3: Device characteristics of green and red micro-PeLEDs/nano-PeLEDs.
Fig. 4: Device stability measurements and a prototypical active-matrix micro-PeLED display.
Fig. 5: EQEs and spectral purity for different classes of miniaturized LEDs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  2. Lundstrom, M. S. & Alam, M. A. Moore’s law: the journey ahead. Science 378, 722–723 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  4. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  5. Behrman, K. & Kymissis, I. Micro light-emitting diodes. Nat. Electron. 5, 564–573 (2022).

    Article  MATH  Google Scholar 

  6. Jin, S. X., Li, J., Li, J. Z., Lin, J. Y. & Jiang, H. X. GaN microdisk light emitting diodes. Appl. Phys. Lett. 76, 631–633 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Jiang, H. X., Jin, S. X., Li, J., Shakya, J. & Lin, J. Y. III-nitride blue microdisplays. Appl. Phys. Lett. 78, 1303–1305 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shin, J. et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  10. Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  ADS  CAS  MATH  Google Scholar 

  13. Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  14. Baek, W. et al. Ultra-low-current driven InGaN blue micro light-emitting diodes for electrically efficient and self-heating relaxed microdisplay. Nat. Commun. 14, 1386 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  15. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Zhao, J. et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 12, 4603 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  17. Fan, J. & Qian, L. Quantum dot patterning by direct photolithography. Nat. Nanotechnol. 17, 906–907 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  18. Liu, Z. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  19. Deng, T. et al. Pixelated phosphor converter for laser-driven adaptive lighting. Laser Photonics Rev. 17, 2300240 (2023).

    Article  ADS  CAS  MATH  Google Scholar 

  20. Park, J. et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photon. 15, 449–455 (2021).

    Article  ADS  CAS  MATH  Google Scholar 

  21. Lu, B. et al. Dennard scaling in optoelectronics: scientific challenges and countermeasures of micro-LEDs for displays. Laser Photonics Rev. 16, 2100433 (2022).

    Article  ADS  Google Scholar 

  22. Zhuang, Z., Iida, D. & Ohkawa, K. Investigation of InGaN-based red/green micro-light-emitting diodes. Opt. Lett. 46, 1912–1915 (2021).

    Article  ADS  PubMed  MATH  Google Scholar 

  23. Dussaigne, A. et al. Full InGaN red (625 nm) micro-LED (10 μm) demonstration on a relaxed pseudo-substrate. Appl. Phys. Express 14, 092011 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Sheen, M. et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 608, 56–61 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  25. Liu, X. et al. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs. Photonics Res 10, 587–593 (2022).

    Article  CAS  MATH  Google Scholar 

  26. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  27. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  28. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  ADS  CAS  MATH  Google Scholar 

  29. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  30. Liu, X. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  31. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  ADS  CAS  MATH  Google Scholar 

  32. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  33. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  34. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  ADS  CAS  MATH  Google Scholar 

  35. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  36. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article  ADS  CAS  MATH  Google Scholar 

  37. Kim, J. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  38. Chen, W. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).

    Article  ADS  CAS  MATH  Google Scholar 

  39. Hsu, C. et al. Efficient mini/micro-perovskite light-emitting diodes. Cell Rep. Phys. Sci. 2, 100582 (2021).

    Article  CAS  Google Scholar 

  40. Yang, X. et al. Towards micro-PeLED displays. Nat. Rev. Mater. 8, 341–353 (2023).

    Article  ADS  Google Scholar 

  41. Liu, D. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 8, eabm8433 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, D. et al. Nondestructive direct optical patterning of perovskite nanocrystals with carbene-based ligand cross-linkers. ACS Nano 18, 6896–6907 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  43. Kim, M., Sadhukhan, P. & Myoung, J.-M. High-performance blue perovskite films and micro-arrays for light-emitting diodes with ionic liquid interlayer. Adv. Funct. Mater. 34, 2309436 (2023).

    Article  MATH  Google Scholar 

  44. Jastrzebska-Perfect, P. et al. On-site growth of perovskite nanocrystal arrays for integrated nanodevices. Nat. Commun. 14, 3883 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  45. Ren, A. et al. High-bandwidth perovskite photonic sources on silicon. Nat. Photon. 17, 798–805 (2023).

    Article  ADS  CAS  MATH  Google Scholar 

  46. Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  47. Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10, 216 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  48. Kim, S. et al. Primary color generation from white organic light-emitting diodes using a cavity control layer for AR/VR applications. Org. Electron. 87, 105938 (2020).

    Article  CAS  MATH  Google Scholar 

  49. Ding, S. et al. Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness. Nat. Photon. 18, 363–370 (2024).

    Article  ADS  CAS  MATH  Google Scholar 

  50. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1204800), the National Natural Science Foundation of China (NSFC) (62274144, 62005243), the Zhejiang Provincial Government, the Natural Science Foundation of Zhejiang Province (LR21F050003), Fundamental Research Funds for the Central Universities and Zhejiang University Education Foundation Global Partnership Fund. S.D.S. acknowledges support from the Royal Society and Tata Group (UF150033). K.J. acknowledges the Royal Society studentship. The authors acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962). We are grateful to L. Feng and LinkZill Technology (Hangzhou) for the provision of the TFT array that powered the active-matrix micro-PeLED display. We thank W. Wang (Zhejiang University) for his assistance with FIB and SEM measurements and P. Xu and L. Yang (Zhejiang University) for helpful discussions. We thank L. Dai (Cambridge University) for his assistance with the hyperspectral microscopic experiments. We acknowledge the Center of Electron Microscopy, Zhejiang University, for their assistance with the TEM, FIB and EDX experiments. J. Sun of ZJU Micro-Nano Fabrication Center is acknowledged for his professional and enthusiastic technical assistance. We thank L. Xiao from the Instrumentation and Service Center for Molecular Sciences at Westlake University for the assistance with the FLIM measurements. The authors thank the Core Facilities, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University for technical support. We thank M. Yu, Y. Zhao and X. Yang for their administrative support.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. planned the research and designed the experiments under the guidance of D.D. and B.Z. Y.L. fabricated the micro- and nano-PeLEDs with Y.W., Y. Yuan and Z.R. and carried out the device characterizations. Y.L. and Y.W. fabricated the NIR micro-PeLEDs and nano-PeLEDs. Y.L. and Y.W. carried out the optical microscopy, SEM and transient EL measurements. Y. Yuan and S.X. fabricated and characterized the green micro-PeLEDs. Y. Yuan carried out the operational stability measurements of the green micro-PeLEDs. Y.L. and Y. Yuan prepared the green active-matrix micro-PeLED display. Z.R. and Y.W. fabricated and measured the red micro- and nano-PeLEDs. W.T. fabricated the CsSnI3-based micro-PeLEDs. Z.L. contributed to the fabrication of the sky-blue micro-PeLEDs. K.J. performed the hyperspectral microscopy experiments under the supervision of S.D.S. B.Y. contributed to device analyses. Y. Yang carried out the TCSPC measurements. Y.G., S.Z., K.Z. and G.Z. contributed to experiments and analyses. Y.L., Y.W., Y. Yuan and Z.R. wrote the initial draft of the manuscript, which was revised by D.D. and B.Z. All authors contributed to the work and commented on the paper.

Corresponding authors

Correspondence to Baodan Zhao or Dawei Di.

Ethics declarations

Competing interests

D.D., Y.L., B.Z. and Y.W. are inventors on CN patent application 202410198153.5. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Substrates fabricated with and without using the localized contact method.

a,b, Schematics of devices fabricated without and with the localized contact method, respectively. For devices prepared using the localized contact method, an etched insulating layer is used to define the active area. The sky-blue arrows represent the direction of the current flow. c,d, Top-view SEM images of the pixel boundaries prepared without and with the localized contact method, respectively. e, Depth profiles of localized contact area by the profilometer. f, AFM images of the active areas prepared by the localized contact method.

Extended Data Fig. 2 Perovskites on the substrates fabricated with and without using the localized contact method.

a, AFM image of the active area with a characteristic length of 30 μm prepared by the localized contact method. b, Roughness of the localized contact area (region (i) in panel a). c, Roughness of the insulated area (region (ii) in panel a). d, SEM image of perovskite sample on substrate fabricated without using the localized contact method. e, SEM image of perovskite sample on substrate prepared by the localized contact method. f, Sidewall/pixel area ratio (%) as a function of characteristic length.

Extended Data Fig. 3 Morphological characteristics of perovskite samples on substrates prepared by the localized contact method.

a, Top-view SEM images of the active area of perovskite samples on substrates prepared by the localized contact method. The upper-right panel shows the SEM image of the perovskite deposited in the active pixel area. The bottom-right panel shows the SEM image of the perovskite deposited across the active pixel region and the insulating region. b,c, Distributions of perovskite grain sizes in the active pixel region and the insulating region, respectively.

Extended Data Fig. 4 SEM image and HAADF-STEM images of the perovskite samples on the substrates prepared by the localized contact method.

a, Top-view SEM image of the active area of the perovskite samples on substrates prepared by the localized contact method. HAADF-STEM images of the perovskite material deposited in the insulating area (b) and in the central region of the localized contact area (c).

Extended Data Fig. 5 PL and EL imaging of NIR perovskites on substrates fabricated with and without using the localized contact method.

a,b, FLIM images of NIR perovskite samples on substrates fabricated without and with the localized contact method, respectively. c, Time-resolved PL decay kinetics of the perovskite in different regions denoted in panels a and b. d,e, Fluorescence optical microscopic images of NIR micro-PeLEDs fabricated with (d) and without (e) the localized contact method with pixel lengths ranging from 200 μm to about 10 μm.

Extended Data Fig. 6 Further fluorescence measurements of NIR micro-PeLEDs fabricated with and without the localized contact method.

a, Normalized EL spectra of micro-PeLEDs using the localized contact method with pixel lengths ranging from 650 μm to about 10 μm at a radiance of 100 W sr1 m−2. b, Time-resolved PL decay kinetics of perovskite samples on substrates using the localized contact method with various characteristic pixel lengths. Fluence: 5 nJ cm−2. c, EL mapping of the 100 × 100-μm2 area of a NIR micro-PeLED using the localized contact method. The measured region of 100 × 100 μm2 is in the centre of the micro-PeLED with a characteristic length of 200 μm. The scanning step interval is 1 μm. d, EL spectral information in the selected region in panel c along the X axis. e,f, Hyperspectral microscopy images of the micro-PeLEDs fabricated without (e) and with (f) the localized contact method.

Extended Data Fig. 7 Images of NIR and green nano-PeLED arrays fabricated using the localized contact method.

a, SEM images of the patterned pixel areas in nano-PeLEDs with characteristic pixel lengths of 890, 440 and 90 nm (from the same samples shown in Fig. 2g). b, Optical microscopic images of the patterned pixel areas in nano-PeLEDs with characteristic pixel lengths of 890, 440 and 90 nm. c, Optical microscopic images of working NIR nano-PeLED arrays with characteristic pixel lengths of 890, 440 and 90 nm. d, Optical microscopic images of working green nano-PeLED arrays with characteristic pixel lengths of 890, 440 and 90 nm.

Extended Data Fig. 8 Further measurements for PeLEDs fabricated using the localized contact method.

ad, Optical microscope images of green micro-PeLED arrays with different pixel resolutions of 64 PPI (a), 635 PPI (b), 1,270 PPI (c) and 2,540 PPI (d). e, EL mapping of the 100 × 100-μm2 area of a green micro-PeLED using the localized contact method. The measured region of 100 × 100 μm2 is in the centre of the micro-PeLED with a characteristic length of 200 μm. The scanning step interval is 1 μm. f, EL spectral information of the PeLEDs in the boxed region of panel e. g,h, Maximum luminance versus characteristic pixel length for the green (g) and red (h) PeLEDs. i, Spectral stability of red micro-PeLEDs fabricated using the localized contact method. EL spectra are obtained from the centre of a red micro-PeLED with a characteristic length of 200 μm.

Extended Data Fig. 9 Spectral and efficiency data of red micro-PeLEDs/nano-PeLEDs.

a, One-dimensional EL spectral distribution in red micro-PeLEDs. b, EQE–luminance data. c, EQE versus characteristic pixel length plot for red micro-PeLEDs/nano-PeLEDs. The box plots and Gaussian fitting were generated from the EQE data, indicating the mean (empty squares), standard deviation, lower quartile (25%), median (50%), upper quartile (75%), interquartile range (25–75%) and maximum/minimum (crosses) of the data. The background colours cyan, light purple and pink denote length-scale regimes corresponding to mini-PeLEDs, micro-PeLEDs and nano-PeLEDs, respectively.

Extended Data Fig. 10 Efficiency and spectral data of sky-blue micro-PeLEDs.

a, EQE versus characteristic pixel length plot for sky-blue micro-PeLEDs. b, EL spectrum of a sky-blue micro-PeLED (peak wavelength: 488 nm). Inset shows the image of a working micro-PeLED array with a characteristic pixel length of 10 μm (driving voltage: 5.5 V).

Extended Data Fig. 11 Structure of the active-matrix micro-PeLED display.

The fabrication processes of the active-matrix micro-PeLED display are available in Methods. The TFT array was provided by LinkZill Technology (Hangzhou). IGZO denotes indium gallium zinc oxide.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Supplementary Tables 1–4 and Supplementary References

Supplementary Video 1

Video clip ‘Growing Tree’ played on the active-matrix micro-PeLED display

Supplementary Video 2

Video clip ‘Rotating Earth’ played on the active-matrix micro-PeLED display

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Y., Wang, Y., Yuan, Y. et al. Downscaling micro- and nano-perovskite LEDs. Nature (2025). https://doi.org/10.1038/s41586-025-08685-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-025-08685-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing