Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microsatellite-based real-time quantum key distribution

Abstract

A quantum network1,2,3 provides an infrastructure that connects quantum devices with revolutionary computing, sensing and communication capabilities. A quantum satellite constellation offers a solution to facilitate the quantum network on a global scale4,5. The Micius satellite has verified the feasibility of satellite quantum communications6,7,8,9; however, scaling up quantum satellite constellations is challenging, requiring small lightweight satellites, portable ground stations and real-time secure key exchange. Here we tackle these challenges and report the development of a quantum microsatellite capable of performing space-to-ground quantum key distribution using portable ground stations. The microsatellite payload weighs approximately 23 kilograms, and the portable ground station weighs about 100 kilograms, representing reductions by more than 1 and 2 orders of magnitude, respectively. Using this set-up, we demonstrate satellite-based quantum key distribution with multiple ground stations and achieve the sharing of up to 1.07 million bits of secure keys during a single satellite pass. In addition, we multiplex bidirectional satellite–ground optical communication with quantum communication, enabling key distillation and secure communication in real time. Also, a secret key, enabling one-time pad encryption of images, is created between China and South Africa at locations separated by over 12,900 kilometres on Earth. The compact quantum payload can be readily assembled on existing space stations10,11 or small satellites12, paving the way for a satellite-constellation-based quantum and classical network for widespread real-life applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The experimental set-up.
Fig. 2: Characterization of the satellite-to-ground QKD system.
Fig. 3: The microsatellite and the portable OGS.
Fig. 4: Experimental procedure of satellite-to-ground QKD, and the experimental results during a single orbit on 25 September 2022.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at Zenodo at https://doi.org/10.5281/zenodo.14732295 (ref. 61).

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  PubMed  MATH  Google Scholar 

  3. Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  4. Lu, C.-Y., Cao, Y., Peng, C.-Z. & Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 94, 035001 (2022).

    Article  ADS  CAS  MATH  Google Scholar 

  5. Bedington, R., Arrazola, J. M. & Ling, A. Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017).

    Article  ADS  Google Scholar 

  6. Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  7. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Article  CAS  PubMed  MATH  Google Scholar 

  8. Ren, J.-G et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  9. Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  10. International space station. NASA https://www.nasa.gov/international-space-station/ (2025).

  11. Gu, Y. The China space station: a new opportunity for space science. Natl Sci. Rev. 9, nwab219 (2022).

    Article  PubMed  MATH  Google Scholar 

  12. Albulet, M. Spacex Non-geostationary Satellite System: Attachment A Technical Information to Supplement Schedules (US Federal Communications Commission, 2016).

  13. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computer System and Signal Processing 175–179 (IEEE, 1984).

  14. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  15. Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  16. Peng, C.-Z. et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007).

    Article  ADS  PubMed  Google Scholar 

  17. Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).

    Article  ADS  PubMed  MATH  Google Scholar 

  18. Liu, Y. et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bennett, C. H. & Brassard, G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. ACM SIGACT News 20, 78–80 (1989).

    Article  MATH  Google Scholar 

  20. Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

    Article  ADS  PubMed  MATH  Google Scholar 

  21. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).

    Article  ADS  PubMed  Google Scholar 

  22. Sidhu, J. S. et al. Advances in space quantum communications. IET Quantum Commun. 2, 182–217 (2021).

    Article  MATH  Google Scholar 

  23. de Forges de Parny, L. et al. Satellite-based quantum information networks: use cases, architecture, and roadmap. Commun. Phys. 6, 12 (2023).

    Article  Google Scholar 

  24. Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  25. Liao, S.-K. et al. Space-to-Ground quantum key distribution using a small-sized payload on Tiangong-2 space lab. Chin. Phys. Lett. 34, 090302 (2017).

    Article  ADS  Google Scholar 

  26. Oi, D. K. et al. CubeSat quantum communications mission. EPJ Quantum Technol. 4, 6 (2017).

    Article  MATH  Google Scholar 

  27. Neumann, S. P. et al. Q3Sat: quantum communications uplink to a 3U CubeSat-feasibility & design. EPJ Quantum Technol. 5, 4 (2018).

    Article  MATH  Google Scholar 

  28. Kerstel, E. et al. Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration. EPJ Quantum Technol. 5, 6 (2018).

    Article  Google Scholar 

  29. Haber, R., Garbe, D., Schilling, K. and Rosenfeld, W. QUBE – a cubesat for quantum key distribution experiments. In Proc. 32nd Annual AIAA/USU Conference on Small Satellites, SSC18-III-05 (Utah State University, 2018).

  30. Podmore, H. et al. Optical terminal for Canada’s Quantum Encryption and Science Satellite (QEYSSat). In Proc. 2019 IEEE International Conference on Space Optical Systems and Applications 1–5 (IEEE, 2019).

  31. Miller, A. V. et al. Vector-towards quantum key distribution with small satellites. EPJ Quantum Technol. 10, 52 (2023).

    Article  MATH  Google Scholar 

  32. Ahmadi, N. et al. QUICK 3 design of a satellite based quantum light source for quantum communication and extended physical theory tests in space. Adv. Quantum Technol. 2300343, 1–9 (2024).

    MATH  Google Scholar 

  33. Villar, A. et al. Entanglement demonstration on board a nano-satellite. Optica 7, 734 (2020).

    Article  ADS  CAS  MATH  Google Scholar 

  34. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  PubMed  Google Scholar 

  35. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  PubMed  MATH  Google Scholar 

  36. Tomamichel, M., Lim, C. C. W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012).

    Article  ADS  PubMed  MATH  Google Scholar 

  37. Lim, C. C. W., Curty, M., Walenta, N., Xu, F. & Zbinden, H. Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014).

    Article  ADS  Google Scholar 

  38. Roberts, G. L. et al. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution. Opt. Lett. 43, 5110 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  39. Agnesi, C., Avesani, M., Stanco, A., Villoresi, P. & Vallone, G. All-fiber self-compensating polarization encoder for quantum key distribution. Opt. Lett. 44, 2398 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Li, Y. et al. High-speed robust polarization modulation for quantum key distribution. Opt. Lett. 44, 5262 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  41. Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L. & Pan, J.-W. General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77, 042311 (2008).

    Article  ADS  MATH  Google Scholar 

  42. Paraïso, T. K. et al. A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021).

    Article  ADS  MATH  Google Scholar 

  43. Liao, S.-K. et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017).

    Article  CAS  MATH  Google Scholar 

  44. Li, Y. et al. Space-ground QKD network based on a compact payload and medium-inclination orbit. Optica 9, 933 (2022).

    Article  ADS  MATH  Google Scholar 

  45. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  PubMed  MATH  Google Scholar 

  46. Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  47. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  48. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  49. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  50. Luo, W.-B. et al. Research on polarization compensation for practical satellite-based quantum key distribution. Opt. Commun. 570, 130925 (2024).

    Article  CAS  Google Scholar 

  51. Zhang, L. et al. Design and in-orbit test of a high accuracy pointing method in satellite-to-ground quantum communication. Opt. Express 28, 8291–8307 (2020).

    Article  ADS  PubMed  MATH  Google Scholar 

  52. Qian, Y. et al. Note: A 10 gbps real-time post-processing free physical random number generator chip. Rev. Sci. Instrum. 88, 096105 (2017).

    Article  ADS  PubMed  Google Scholar 

  53. Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Jiang, C., Yu, Z.-W. & Wang, X.-B. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation. Phys. Rev. A 95, 032325 (2017).

    Article  ADS  MATH  Google Scholar 

  55. Chau, H. F. Decoy-state quantum key distribution with more than three types of photon intensity pulses. Phys. Rev. A 97, 040301 (2018).

    Article  ADS  CAS  MATH  Google Scholar 

  56. Tomamichel, M. & Renner, R. Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011).

    Article  ADS  PubMed  MATH  Google Scholar 

  57. Currás-Lorenzo, G. et al. Tight finite-key security for twin-field quantum key distribution. npj Quantum Inf. 7, 22 (2021).

    Article  ADS  MATH  Google Scholar 

  58. Jiang, C., Hu, X.-L., Yu, Z.-W. & Wang, X.-B. Composable security for practical quantum key distribution with two way classical communication. New J. Phys. 23, 063038 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  60. Sidhu, J. S., Brougham, T., McArthur, D., Pousa, R. G. & Oi, D. K. Finite key performance of satellite quantum key distribution under practical constraints. Commun. Phys. 6, 210 (2023).

    Article  MATH  Google Scholar 

  61. Liao, S.-K. Data for ‘microsatellite-based real-time quantum key distribution’. Zenodo https://doi.org/10.5281/zenodo.14732295 (2025).

Download references

Acknowledgements

We thank W.-S. Tang, C.-W. Feng, J.-S. Dai, T.-T. Wang, T. Tang, Y.-C. Ji, S.-Q. Fan and Z. Wang for their efforts in the development of the payloads and the microsatellite; H.-B. Li, Z. Wang, W.-W. Ye, S.-J. Xu, X. Li, X. Han, Z.-G. Xiao, L.-K. Guo, C.-F Zhu and Y.-Y. Wang for their long-term assistance in observations and experimental measurements; Q.-Y. Yao, S.-Q. Zhao and Y.-G. Zhao for their efforts in the development of the portable OGSs; and Z.-Y. Chen, C.-L. Li and L.-Y. Han for discussions. This work was supported by National Natural Science Foundation of China (92476203, T2125010, 61961146002, 12174374, 92476001, 12374475 and 62031024), National Key Research and Development Program of China (2020YFA0309701 and 2018YFE0200600), Key R&D Plan of Shandong Province (2021ZDPT01), Jinan Innovation Zone, Innovation Program for Quantum Science and Technology (2021ZD0300104, 2021ZD0300108 and 2021ZD0300300) and Shanghai Municipal Science and Technology Major Project (2019SHZDZX01).

Author information

Authors and Affiliations

Authors

Contributions

C.-Z.P. and J.-W.P. conceived the research. S.-K.L., C.-Z.P. and J.-W.P. designed the experiment. Y.L., S.-K.L., Y.-H.L, J.Y. and C.-Z.P. developed the compact QKD light source. L.Z., H.-Y.W., J.-C.W., T.C., S.-K.L. and C.-Z.P. developed the satellite tracking technique. M.Y., C.-Z.W., Y.L., W.-Q.C., S.-K.L. and C.-Z.P. developed the multiplexed quantum and classical communication. S.-K.L., Y.L., W.-Q.C., C.-Z.W., M.Y., L.Z., H.-Y.W., L.C., J.-C.W., X.-Y.T., T.C., C.-F.L., J.Z., F.-Z.L., W.-Y.L., J.Y., R.S., C.-Z.P., J.-Y.W. and J.-W.P. developed the satellite and payloads. J.-G.R., B.J., H.-J.X., X.-J.L., H.L., G.-W.Y., H.-L.Y., Y.C., J.Y., S.-K.L., C.-Z.P. and J.-W.P. developed the portable OGSs. X.-B.W., C.J. and C.-Z.W. contributed to the decoy-state analysis. S.-K.L., Y.L., J.-G.R., B.J., H.-L.Y., W.-Q.C., C.-Z.W., M.Y., L.Z., H.-Y.W., C.W., F.-Z.L., W.-B.L., Y.I., F.P., H.-Z.C., X.-H.T., S.-J.X., F.Z., N.-L.L., L.L., Y.C., J.Y., Q.Z., C.-Z.P. and J.-W.P. contributed to the experiment such as data collection. Y.L., S.-K.L., F.X., Q.Z., C.-Z.P. and J.-W.P. analysed the data and wrote the paper, with input from C.-Z.W., M.Y., L.Z., B.J., H.-L.Y. and C.J. J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Sheng-Kai Liao, Cheng-Zhi Peng or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic of the polarization compensation process on the Poincaré sphere.

a, The first QWP moves the corresponding point \({R}^{{\prime} }\) to the equatorial plane, where the corresponding points \({D}^{{\prime} }\) and \({H}^{{\prime} }\) will appear on a warp coil. The central axis for rotation is the projection axis of \(o{R}^{{\prime} }\) (o is the original point) on the equatorial plane. b, The second QWP moves the corresponding point \({H}^{{\prime} }\) to the equatorial plane, where the corresponding point \({R}^{{\prime} }\) will be in the pole position. The central axis for rotation is the projection axis of \(o{H}^{{\prime} }\) on the equatorial plane. c, The HWP moves the corresponding point \({H}^{{\prime} }\) to the original position of point H. The central axis for rotation is the middle axis of \(o{H}^{{\prime} }\) and oH. d, The corresponding points \({R}^{{\prime} }\), \({H}^{{\prime} }\) and \({D}^{{\prime} }\) will return to their original positions of R, H and D (\({R}^{{\prime} }\) coincides with R, \({H}^{{\prime} }\) coincides with H, \({D}^{{\prime} }\) coincides with D. The three wave plates help realize the previous unitary transformation process \({U}^{{\prime} }\).

Extended Data Fig. 2 QBER contribution of noise and satellite elevation angle as functions of time.

The transmitted vacuum state allows for the assessment of the polarization-independent QBER arising from factors such as background noise. In urban environments, background noise is a dominant contributor to the QBER, particularly at low satellite elevation angles where received photon counts are reduced. This impact varies depending on ground station location, time of day, and weather conditions. Employing spectral filtering with narrower linewidth and spatial filtering with smaller field of view can further mitigate this issue.

Extended Data Fig. 3 Method of satellite attitude control.

We incorporate the detected uplink beacon laser of the capture camera into the closed loop of satellite attitude control to achieve precise satellite attitude control.

Extended Data Fig. 4 Laser communication principles.

a, Hardware schematic for laser communication. b, Implementation of time synchronization using laser communication. FPGA, field programmable gate array; CDR, clock and data recovery; EDFA, erbium-doped fiber amplifier.

Extended Data Fig. 5 Procedure of laser-communication-based time synchronization and key distillation.

RND, random number; TDC, time-to-digital converter; LDPC, low-density parity check; CRC, cyclic redundancy check.

Extended Data Fig. 6 Illustration of the processes of key relay and encrypted communication between Jinan station and Nanshan station within two satellite orbits.

a, Key relay. b, Encrypted communication. By leveraging the satellite as a trusted relay, both key relay and encrypted communication can be realized between the two OGSs.

Extended Data Table 1 Parameters and performance of the acquisition, pointing and tracking (APT) systems
Extended Data Table 2 Comparison with previous missions
Extended Data Table 3 Experimental results of satellite-to-ground QKD with comparative key rate calculations
Extended Data Table 4 Experimental results of satellite-based key relay and encrypted communication

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cai, WQ., Ren, JG. et al. Microsatellite-based real-time quantum key distribution. Nature 640, 47–54 (2025). https://doi.org/10.1038/s41586-025-08739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08739-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing